Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate
نویسندگان
چکیده
منابع مشابه
Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate
Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors....
متن کاملMulti-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles
A new sensor-selection solution within a Multi-Bernoulli-based multi-target tracking framework is presented. The proposed method is especially designed for the general multi-target tracking case with no prior knowledge of the clutter distribution or the probability of detection, and uses a new task-driven objective function for this purpose. Step-by-step sequential Monte Carlo implementation of...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملOn multi-Bernoulli approximations to the Bayes multi-target filter
Mahler recently proposed the Multitarget Multi-Bernoulli (MeMBer) recursion as a tractable approximation to the Bayes multi-target recursion, and outlined a Gaussian mixture solution under linear Gaussian assumptions. These proposals are speculative in the sense that, to date, no implementations have been reported. In this paper, it is shown analytically that the MeMBer recursion has a signific...
متن کاملCardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation
The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set (RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor measurement sets. However, because of the existence of systematic errors in sensor measurements, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2015
ISSN: 1424-8220
DOI: 10.3390/s151229804